Early seizure detection.
نویسندگان
چکیده
For patients with medically intractable epilepsy, there have been few effective alternatives to resective surgery, a destructive, irreversible treatment. A strategy receiving increased attention is using interictal spike patterns and continuous EEG measurements from epileptic patients to predict and ultimately control seizure activity via chemical or electrical control systems. This work compares results of seven linear and nonlinear methods (analysis of power spectra, cross-correlation, principal components, phase, wavelets, correlation integral, and mutual prediction) in detecting the earliest dynamical changes preceding 12 intracranially-recorded seizures from 4 patients. A method of counting standard deviations was used to compare across methods, and the earliest departures from thresholds determined from non-seizure EEG were compared to a neurologist's judgement. For these data, the nonlinear methods offered no predictive advantage over the linear methods. All the methods described here were successful in detecting changes leading to a seizure between one and two minutes before the first changes noted by the neurologist, although analysis of phase correlation proved the most robust. The success of phase analysis may be due in part to its complete insensitivity to amplitude, which may provide a significant source of error.
منابع مشابه
Deep Recurrent Neural Networks for seizure detection and early seizure detection systems
Epilepsy is common neurological diseases, affecting about 0.6-0.8 % of world population. Epileptic patients suffer from chronic unprovoked seizures, which can result in broad spectrum of debilitating medical and social consequences. Since seizures, in general, occur infrequently and are unpredictable, automated seizure detection systems are recommended to screen for seizures during long-term el...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملEarly Seizure Detection by Applying Frequency-Based Algorithm Derived from the Principal Component Analysis
The use of automatic electrical stimulation in response to early seizure detection has been introduced as a new treatment for intractable epilepsy. For the effective application of this method as a successful treatment, improving the accuracy of the early seizure detection is crucial. In this paper, we proposed the application of a frequency-based algorithm derived from principal component anal...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملEarly detection of epileptic seizures based on parameter identification of neural mass model
Physiologically based models are attractive for seizure detection, as their parameters can be explicitly related to neurological mechanisms. We propose an early seizure detection algorithm based on parameter identification of a neural mass model. The occurrence of a seizure is detected by analysing the time shift of key model parameters. The algorithm was evaluated against the manual scoring of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2001